cloud

【2025年01月】3大クラウドのAI系サービスリリースノート

  • POST
はじめに この記事では、Azure、AWS、Google Cloudの3大クラウドサービスのAIサービスの新規機能リリース履歴をまとめています。 主に以下のURLの情報をもとに新機能のキャッチアップを行っています。 Azure公式ドキュメント: Azure OpenAI Serviceニュース Github: Azure公式ドキュメント管理リポジトリ Github: Azure OpenAI APIプレビューバージョン一覧 Github: Azure OpenAI API安定版バージョン一覧 AWS公式ドキュメント: AWS Bedrockリリースノート Google Cloud公式ドキュメント: Vertex AIリリースノート Anthropic公式ドキュメント: APIバージョン一覧 Azure 2025年01月21日: gpt-4o-realtime-previewがグローバルデプロイ可能に gpt-4o-realtime-previewのモデルバージョン 2024-12-17がEast US 2とSweden Centralリージョンでグローバルデプロイメント可能になりました。 Azure公式: グローバルスタンダードデプロイメント 2025年01月21日: GPT-4o Realtime APIがプロンプトキャッシュをサポート GPT-4o Realtime APIがプロンプトキャッシュをサポートしました。 プロンプト キャッシュを使用すると、プロンプトの開始時に同じ内容だった長いプロンプトに対して、全体的なリクエストの遅延とコストを削減できます。 Azure公式: プロンプトキャッシュについて 2025年01月21日: GPT-4o Realtime APIが新音声をサポート GPT-4o Realtime APIで以下の新しい音声が使用できるようになりました。

Azure OpenAIの各デプロイメントタイプ

  • POST
Azure OpenAIの各デプロイメントタイプ はじめに Azure OpenAIでは、モデルをデプロイするときに5つのデプロイメントタイプを選択することができます。 この記事では、Azure OpenAIのそれぞれのデプロイメントタイプについて紹介します。 Azure OpenAI のデプロイメントタイプ Azure Open AIでは、以下の5つのデプロイメントタイプが存在します。 Standard Provisioned Global Standard Global Provisioned Global Batch Azure公式ドキュメント: Azure OpenAI デプロイメントタイプ Azure公式ドキュメント: Azure Open価格 Standard Standardは、Azure OpenAIのサービス開始当初からあるデプロイメントタイプです。 モデルのデプロイ時に設定したTPM(1分当たりのトークン数)を処理上限として、APIのコール時に使用したトークン数に応じて従量課金される形式になっています。 データを処理するリージョンは、作成したAzure OpenAIリソースのリージョンで固定されるため、データを処理する所在地の指定があるリージョンでの利用に適しています。 Azure公式ドキュメント: Azure OpenAI デプロイメントタイプ Provisioned Provisionedは、月間または、年間通して使用するスループット(PTU: Provisioned Throughput)を事前予約することができるデプロイメントタイプ。 事前にモデルの処理可能量にあたるPTUを購入することで、以下のメリットが得られます。 Azure公式ドキュメント: Azure OpenAI Provisioned Throughput 一貫したレイテンシ: レートリミットによる429エラーの発生が抑止され、応答時間が安定する コストの削減: 月間または、年間通しての利用により従量課金よりも安いコストでOpenAIを利用できる デメリットとしては、 未使用時のコストの増加: 事前にPTUを購入するため、使用量が少ない場合にもコストが発生する Azure OpenAIのモデルバージョンごとに、購入できるPTUの単位や、PTU当たりの処理能力(単位時間当たりで何トークン処理できるかなど)は異なります。 PTU当たりの処理能力や、PTU当たりの料金はドキュメントに記載がないが、Azure OpenAI Studioのモデルのデプロイの画面から、 プロンプトトークン、生成トークン、1分当たりのピーク時のリクエスト数から必要な推定PTUを算出と価格の確認が可能です。 Global Standard/Provisioned Globalデプロイメントは、Azure基盤側でAzure Open AIへの各リクエストを最も可用性の高いリージョンのデータセンターにルーティングすることで、 通常のデプロイメントタイプよりも高い可用性を提供するデプロイメントタイプ。

PowerAutomate WorkflowからTeamsのチャネルにメッセージを通知

  • POST
PowerAutomateワークフローからTeamsのチャネルにメッセージを通知 はじめに この記事ではAzure MonitorのアラートをMicrosoft Teamsに通知する方法を紹介します。 PowerAutomateワークフローを作成する ワークフローを作成する場合、 PowerAutomateのWEBサイトか、 TeamsのWEBサイトまたはアプリから作成が可能です。 この記事では、 Teamsアプリからワークフローの作成を行います。 PowerAutomate 以下の手順で作成を行います。 通知対象のチャネルのメニューからワークフローを選択する Webhook要求を受信するとチャネルに投稿する ワークフローの名前を入力し、ワークフローを追加 追加後に表示されるワークフローのURLを控える Adaptive Cardでの通知 ワークフローから通知を行う際は、 メッセージの形式をAdaptive Cardにする必要があります。 Adaptive Cardは、 JSONで記述されたUI要素を、 アプリケーションで表示する際のJSONの標準フォーマットです。 Adaptive Cardは、 Teams、 Outlook、 Androidアプリ、 iOSアプリなどのマルチプラットフォームに対応(Adaptive)しています。 以下のサイトで、 Adaptive Cardのプレビューが可能です。 Designer | Adaptive Cards Adaptive Cardで通知を行うPythonコード ワークフローの作成完了後は、 ワークフローのURLに通知を送信するPythonコードを用意します。 .env TEAMS_WEBHOOK_URL=※コピーしたワークフローのURLを設定 main.py 以下のコードはテキスト、 テーブル、 ファクトセットの3 種類メッセージをポストする。 import os import requests from dotenv import load_dotenv load_dotenv() # URL取得 WEBHOOK_URL = os.

Python用のOpenAI APIライブラリにおけるエラーハンドリング

  • POST
Python用のOpenAI APIライブラリにおけるエラーハンドリング はじめに Python用のOpenAIのライブラリを使って、OpenAIのAPIを利用するに当たって、エラー発生時のエラーハンドリングを適切に実装にするために、 OpenAIのライブラリに実装されているエラークラスとリトライについて解説します。 前提条件 検証時の環境情報は以下の通りです。 Python : 3.12 ライブラリバージョン : openai-1.34.0 API バージョン : 2024-05-01-preview リソース : Azure OpenAI モデル : gpt-4-32k エラークラス OpenAIのライブラリには、以下のエラークラスが実装されています。 APIStatusError 4xx - 5xx台のステータスコードが返された場合に発生する例外を表すクラスです。 サブクラスとして、以下のエラークラスが実装されています。 400 : openai.BadRequestError : トークン数がコンテキストウィンドウを超過した場合、コンテンツフィルターブロックされた場合などに発生 401 : openai.UnauthorizedError : APIの認証に失敗した場合などに発生 404 : openai.NotFoundError : リクエスト先のモデルデプロイメントが見つからない場合などに発生 (OpenAIサービス自体が存在しない場合は、APIConnectionErrorが発生する) 408 : openai.APITimeoutError : APIのタイムアウトが発生した場合に発生 409 : openai.ConflictError : リクエストが競合している場合に発生 422 : openai.UnprocessableEntityError : リクエストの項目不足などの理由でリクエストが処理できない場合に発生 429 : openai.RateLimitError : リクエストがレート制限を超えた場合に発生 500 : openai.

Azure AI Searchクエリリファレンスガイド

  • POST
Azure AI Searchクエリリファレンスガイド はじめに この記事では、Azure AI Searchのクエリの使い方について紹介します。 Azure Cognitive Searchとは Azure AI Search(旧Azure Cognitive Search) は、ストレージ上のファイルなどのデータソースに対して、インデックスを作成し、作成したインデックスによる検索を可能にするサービスです。 インデックスには、ファイルの種類や、ファイルの作成日などのファイルに関するメタデータを格納することができ、 AI Searchを使うと、指定した種類に該当するファイルの絞り込みや、 指定した期間に該当する作成日のファイルの検索などが可能になります。 https://learn.microsoft.com/ja-JP/azure/search/search-what-is-azure-search クエリパラメータ Azure AI Searchでは、検索クエリの実行時にクエリパラメータを渡すことで、検索時に挙動を変更することができます。 クエリパラメータは以下のようなものがあります。 queryType searchMode search searchFields https://learn.microsoft.com/ja-jp/azure/search/search-query-overview queryType queryTypeはクエリのパーサーを設定します。 以下の値が指定できます。 simplefull : 既定のクエリパーサー、単純なフルテキスト検索に最適 full : 正規表現、近接検索、あいまい検索、ワイルドカード検索などの高度なクエリに使用する semantic : セマンティック検索用に設定 searchMode Azure AI SearchのsearchModeパラメータは、検索クエリの動作を指定することができます。 searchModeにはanyとallの2つの値を指定することができます。 デフォルトのsearchModeはanyです。 それぞれのモードは以下のような動作を持ちます。 any このモードを指定すると、検索クエリに含まれる単語のいずれかが存在するすべてのドキュメントを検索します。 # キーワードのいずれかを含むドキュメントを表示 search='キーワード1 キーワード2'&searchMode=any all このモードを指定すると、検索クエリに含まれるすべての単語が存在するドキュメントを検索します。

Azure AI Search入門

  • POST
Azure AI Search入門 はじめに この記事では、Azure AI Searchの基礎知識について紹介します。 Azure AI Searchとは Azure AI Search(旧Azure Cognitive Search) は、ストレージ上のファイルなどのデータソースに対して、インデックスを作成し、作成したインデックスによる検索を可能にするサービスです。 インデックスには、ファイルの種類や、ファイルの作成日などのファイルに関するメタデータを格納することができ、 AI Searchを使うと、指定した種類に該当するファイルの絞り込みや、 指定した期間に該当する作成日のファイルの検索などが可能になります。 https://learn.microsoft.com/ja-JP/azure/search/search-what-is-azure-search Azure AI Searchの基本要素 Azure AI Searchは以下の要素から構成されています。 データソース インデクサー インデックス ドキュメント フィールド データソース データソースはAzure AI Searchで検索対象となるデータが格納されている場所を指します。 具体例としては、Azure SQL Database、Azure Cosmos DB、Azure Blob Storageなどのデータストレージサービスが該当します。 インデクサー インデクサーはデータソースからデータを読み取り、それをインデックスに格納する役割を持つものです。 インデックス インデックスはデータソースから取得したデータを効率よく検索できる形式で格納したもののことです。 ドキュメント ドキュメントはインデックス内で格納されているユニークな個々のレコードを指します。 各ドキュメントは一連のフィールドとその値から構成され、通常はJSONオブジェクトとして表現されます。 フィールド フィールドはインデックス内の各ドキュメントが持つ属性を指します。 データベースでいうカラムに該当するものです。 Search Explorer Search Explorerは、Azure portalからAzure AI Searchに検索クエリを実行することができる機能です。 Search Explorerは、AI Searchにインデックスを作成すると自動的に利用できるようになります。 Search Explorerを使うことで、クエリのテストや、インデックス内のドキュメントの確認をすることができます。 https://learn.microsoft.com/ja-jp/azure/search/search-explorer