Azure

Azure Functions作成時に「Linux dynamic workers are not available in resource group 」が発生したときの対処

  • POST
はじめに Azureにおいて、従量課金プランのFunctionsを作成した際に、エラーが発生し、Functionsが作成できなるなることがあります。 本記事では、上記事象の原因と対応方法についてご紹介します。 Linux dynamic workers are not available in resource group <リソースグループ名>エラー 上記のエラーはAzure の仕様により、同一リソースグループ内に Windows と Linux の App Service Plan を混在できないことを示しています。 対象のリソースグループに一度でも Windows の App Service Plan を作成すると、たとえ削除しても Azure 基盤側にその情報が保持され、そのリソースグループ内では Linux の Dynamic SKU(従量課金プラン)を新規作成できなくなります。 公式ドキュメント 対処方法 結論としては、別のリソースグループを新たに作成し、そちらに Azure Functions(Linux/Consumption Plan)を作成することでFunctionsの作成が可能になります。 おわりに 本記事では、「Linux dynamic workers are not available in resource group」というエラーの原因とその対処方法について説明しました。 a8adscript('body').showAd({"req": {"mat":"3HREPM+6UHH82+279M+HUSFL","alt":"商品リンク","id":"3IzcOOW-g7-u2A1CfX"},"goods": {"ejp":"h"+"ttps://ebookjapan.yahoo.co.jp/books/789749/","imu":"h"+"ttps://cache2-ebookjapan.akamaized.net/contents/thumb/m/J6100281917861.jpg?1696410860000"}}); a8adscript('body').showAd({"req": {"mat":"3HREPM+6UHH82+279M+HUSFL","alt":"商品リンク","id":"3IzcOOW-g7-u2A2FzR"},"goods": {"ejp":"h"+"ttps://ebookjapan.yahoo.co.jp/books/721208/","imu":"h"+"ttps://cache2-ebookjapan.akamaized.net/contents/thumb/m/F0100169654961.jpg?1663322311000"}});

【2025年06月】3大クラウド(Azure, AWS, Google Cloud)のAI系サービスリリースノート

  • POST
はじめに この記事では、Azure、AWS、Google Cloudの3大クラウドサービスのAIサービスの新規機能リリース履歴をまとめています。 主に以下のURLの情報をもとに新機能のキャッチアップを行っています。 Azure公式ドキュメント: Azure OpenAI Serviceニュース Azure公式ドキュメント: Azure AI Agent Serviceニュース Github: Azure公式ドキュメント管理リポジトリ Github: Azure OpenAI APIプレビューバージョン一覧 Github: Azure OpenAI API安定版バージョン一覧 AWS公式ドキュメント: AWS Bedrockリリースノート Google Cloud公式ドキュメント: Vertex AIリリースノート Anthropic公式ドキュメント: APIバージョン一覧 Azure 2025年06月17日: codex-mini と o3-pro モデルがリリース codex-mini と o3-pro モデルが利用可能になりました。 codex-miniは、OpenAIのo4-miniから派生した、コーディングタスクに特化したAIモデルです。 o3-proは6月10日にOpenAIから提供されたo3シリーズはで最も高性能なモデルです。 項目 o3-pro codex-mini リージョン East US2, Sweden Central(Global Standard) East US2, Sweden Central(Global Standard) アクセス要否 o3アクセス済みなら申請不要、それ以外は申請必要 アクセス申請不要 価格 $20(入力) / $80(出力) $1.

【2025年04月】3大クラウドのAI系サービスリリースノート

  • POST
はじめに この記事では、Azure、AWS、Google Cloudの3大クラウドサービスのAIサービスの新規機能リリース履歴をまとめています。 主に以下のURLの情報をもとに新機能のキャッチアップを行っています。 Azure公式ドキュメント: Azure OpenAI Serviceニュース Github: Azure公式ドキュメント管理リポジトリ Github: Azure OpenAI APIプレビューバージョン一覧 Github: Azure OpenAI API安定版バージョン一覧 AWS公式ドキュメント: AWS Bedrockリリースノート Google Cloud公式ドキュメント: Vertex AIリリースノート Anthropic公式ドキュメント: APIバージョン一覧 Azure 2025年04月05日: Azure FunctionsがMCPトリガーに対応 Azure FunctionsがMCP(Model Context Protocol)に対応したMCPトリガーが利用可能になりました。 VS Code上のGitHub CopilotなどのMCPクライアントからMCPトリガーのFunctionsをコールすることができるようになっています。 https://techcommunity.microsoft.com/blog/appsonazureblog/build-ai-agent-tools-using-remote-mcp-with-azure-functions/4401059 Microsoft公式ブログ: Azure FunctionsがMCPトリガーに対応 Zenn: MCPトリガーで現在時刻を応答するコードの例 2025年04月14日: Azure OpenAIでGPT-4.1が利用可能に OpenAIからリリースされたGPT-4.1がAzure OpenAIでも利用可能になりました。 最大100万トークン対応:従来のGPT-4o(12.8万トークン)を大幅に超える 3モデル展開:「GPT‑4.1」「GPT‑4.1 mini」「GPT‑4.1 nano」 mini:GPT-4o超えの知能、レイテンシ半減、コスト83%減 nano:1Mトークン対応、MMLU 80.

Azure Durable Functions入門

  • POST
はじめに この記事では、Azure Durable Functionsについて解説します。 Azure Durable Functions ​Durable Functionsは、Azure Functionsの拡張機能で、状態を保持する(ステートフルな)ワークフローを実現可能にする機能です。 ​複数の処理を順番や並列で実行し、状態管理や再実行といった処理をユーザーは実装する必要がなく、Durable Functions側で自動で行うため、開発者はビジネスロジックの実装に集中することができます。 また、HTTPトリガー関数の場合3分50秒のタイムアウト制限があるため、長時間の処理を行うことができませんが、Durable Functionsを使うことで、長時間の処理を行うことが可能になります。  Azure公式ドキュメント: Azure Durable Functionsとは Azure Durable Functionsのアーキテクチャ Durable Fucntionsは以下の4つの関数で構成されています。 クライアント関数 (Client Function) オーケストレーター関数 (Orchestrator Function) アクティビティ関数 (Activity Function) エンティティ関数 (Entity Function) それぞれの次の項で、それぞれの関数について解説していきます。  Azure公式ドキュメント: Azure Durable Functionsにおける各関数の説明 クライアント関数 Durable Functionsをスタートさせるトリガー関数です。 通常のFunctionsと同様にHTTPトリガーやタイマートリガーなどイベントドリブンで実装されており、 定義したトリガーからイベントなどを受け取って、オーケストレーター関数を起動するのがこの関数の役目です。 オーケストレーター関数 後述するアクティビティ関数の実行を管理する役割の関数です。 後述するアクティビティ関数や他の関数を記載された通りに起動します。 ただし注意点として、オーケストレーター関数は 決定論的(deterministic) である必要があります。 決定論的とは、「同じ入力なら、いつ呼んでもまったく同じ動きをする」ように書く必要があることを示します。 Durable FunctionsではAzureサービスの障害時やサービスメンテナンス時などで処理が中断された場合に、オーケストレーター関数を再実行することができます。 再実行時に実行のたびに結果が変わるような処理が入っていると、予期しない動作を起こす危険性があるため、現在時刻やランダム値を使った処理など、毎回結果が変わるようなコードをオーケストレーター関数で定義することはアンチパターンとされています。

【2025年01月】3大クラウドのAI系サービスリリースノート

  • POST
はじめに この記事では、Azure、AWS、Google Cloudの3大クラウドサービスのAIサービスの新規機能リリース履歴をまとめています。 主に以下のURLの情報をもとに新機能のキャッチアップを行っています。 Azure公式ドキュメント: Azure OpenAI Serviceニュース Github: Azure公式ドキュメント管理リポジトリ Github: Azure OpenAI APIプレビューバージョン一覧 Github: Azure OpenAI API安定版バージョン一覧 AWS公式ドキュメント: AWS Bedrockリリースノート Google Cloud公式ドキュメント: Vertex AIリリースノート Anthropic公式ドキュメント: APIバージョン一覧 Azure 2025年01月21日: gpt-4o-realtime-previewがグローバルデプロイ可能に gpt-4o-realtime-previewのモデルバージョン 2024-12-17がEast US 2とSweden Centralリージョンでグローバルデプロイメント可能になりました。 Azure公式: グローバルスタンダードデプロイメント 2025年01月21日: GPT-4o Realtime APIがプロンプトキャッシュをサポート GPT-4o Realtime APIがプロンプトキャッシュをサポートしました。 プロンプト キャッシュを使用すると、プロンプトの開始時に同じ内容だった長いプロンプトに対して、全体的なリクエストの遅延とコストを削減できます。 Azure公式: プロンプトキャッシュについて 2025年01月21日: GPT-4o Realtime APIが新音声をサポート GPT-4o Realtime APIで以下の新しい音声が使用できるようになりました。

Azure OpenAIの各デプロイメントタイプ

  • POST
Azure OpenAIの各デプロイメントタイプ はじめに Azure OpenAIでは、モデルをデプロイするときに5つのデプロイメントタイプを選択することができます。 この記事では、Azure OpenAIのそれぞれのデプロイメントタイプについて紹介します。 Azure OpenAI のデプロイメントタイプ Azure Open AIでは、以下の5つのデプロイメントタイプが存在します。 Standard Provisioned Global Standard Global Provisioned Global Batch Azure公式ドキュメント: Azure OpenAI デプロイメントタイプ Azure公式ドキュメント: Azure Open価格 Standard Standardは、Azure OpenAIのサービス開始当初からあるデプロイメントタイプです。 モデルのデプロイ時に設定したTPM(1分当たりのトークン数)を処理上限として、APIのコール時に使用したトークン数に応じて従量課金される形式になっています。 データを処理するリージョンは、作成したAzure OpenAIリソースのリージョンで固定されるため、データを処理する所在地の指定があるリージョンでの利用に適しています。 Azure公式ドキュメント: Azure OpenAI デプロイメントタイプ Provisioned Provisionedは、月間または、年間通して使用するスループット(PTU: Provisioned Throughput)を事前予約することができるデプロイメントタイプ。 事前にモデルの処理可能量にあたるPTUを購入することで、以下のメリットが得られます。 Azure公式ドキュメント: Azure OpenAI Provisioned Throughput 一貫したレイテンシ: レートリミットによる429エラーの発生が抑止され、応答時間が安定する コストの削減: 月間または、年間通しての利用により従量課金よりも安いコストでOpenAIを利用できる デメリットとしては、 未使用時のコストの増加: 事前にPTUを購入するため、使用量が少ない場合にもコストが発生する Azure OpenAIのモデルバージョンごとに、購入できるPTUの単位や、PTU当たりの処理能力(単位時間当たりで何トークン処理できるかなど)は異なります。 PTU当たりの処理能力や、PTU当たりの料金はドキュメントに記載がないが、Azure OpenAI Studioのモデルのデプロイの画面から、 プロンプトトークン、生成トークン、1分当たりのピーク時のリクエスト数から必要な推定PTUを算出と価格の確認が可能です。 Global Standard/Provisioned Globalデプロイメントは、Azure基盤側でAzure Open AIへの各リクエストを最も可用性の高いリージョンのデータセンターにルーティングすることで、 通常のデプロイメントタイプよりも高い可用性を提供するデプロイメントタイプ。